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Abstract—The effective thermal conductivity of a dilute suspension of slightly deformed droplets s calculated in
the limit of small particle Peclet number for the undisturbed bulk shear, # = yy, and the linear bulk temperature
distribution, T = ay. Two distinct cases of small deformation are considered; deformation dominated by
interfacial tension forces, and deformation dominated by viscous forces in the drop. The results show that the
presence of deformation can cause a fundamental change in form of the dominant, flow-induced contribution
to the effective conductivity.

INTRODUCTION

Recently, Leal (1973) considered the effective conductivity of a dilute suspension of neutrally
buoyant spherical drops in the limit of low particle Peclet number for the case of a simple bulk shear
flow (u = yy) and a linear bulk temperature distribution (T = @y). A general expression was
presented relating the effective (bulk) conductivity of the suspension to the microscale velocity and
temperature fields associated with each individual particle. Using this relationship, the effective
conductivity was evaluated for Re < Pe < 1, with the velocity fields obtained from the classical
creeping flow solution of Taylor (1932) for a spherical drop in shear flow, and the microscale
temperature field calculated using the method of matched asymptotic expansions.

Itisclear, of course, that no droplet in areal suspension will be exactly spherical, and, indeed, the
deviations from spherical shape can often become quite large. Nevertheless, it would normally be
expected that the solution for a sphere should provide an adequate first estimate for the effective
conductivity in a flowing suspension, provided only that either the surface tension or droplet
viscosity is sufficiently large so that the droplets are nearly spherical. However, a feature of Leal’s
analysis was thatthe first,0(Pe), flow-induced modifications of the local temperature field near adrop
produced no contribution to the bulk conductivity, which only finally exhibited a flow-induced
contribution at 0(Pe*?). Since this result would appear to be due to the symmetry induced in the
temperature field by the spherical shape of the drop, it is clearly possible that the dependence of the
effective conductivity on Peclet number could be altered fundamentally when the shape is allowed to
deviate from spherical; specifically, we may ask whether even very small deformations of shape
might not cause the first order, 0(Pe), modifications of the local temperature field to make
contributions to the bulk conductivity of the same or larger magnitude than the 0( Pe *) contributions
which were previously found by Leal.

In the present communication, we consider the case of small deformations of shape in the two
limiting cases of dominant interfacial tension forces (¢ ~ ayu /o < 1), and dominant internal (drop)
viscosity effects (e ~1/A <1). Here, € is the deformation parameter, p the viscosity of the
suspendingfluid, A theratio of internal to external viscosity, a the undeformed dropradius, and o the
interfacial tension. The case wheninterfacial tensionandinternal viscosity effects are the same order
of magnitude is more difficult and will not be considered.

The particle shape, local velocity field and temperature distribution
For small deformations of shape, the surface of a drop is most conveniently represented in the
form originally suggested by Taylor (1932),

ro=1+¢f(6, ¢)+0(e’) {1]
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in which (, 8, ¢ ) is a spherical coordinate system with its origin at the geometric center of the drop.
The radial coordinate has been nondimensionalized with respect to the undeformed drop radius, a.
The precise nature of the deformation parameter €, which is assumed to be small, and the shape
function f(6, ¢) depends on the physical limit which is considered. For the case of dominant
interfacial tension forces, Taylor has shown

ayp (19A +16

€= \16r+16

), £(6, ) = sin® 8 sin 2¢. 2]

Ontheother hand, for dominant internal viscosity the correspondingresults are (Taylor 1932)

e=%, f(8, ¢) = sin® @ cos 2¢. (31

In either case the creeping flow velocity fields outside and inside the drop may be represented by
asymptotic expansions of the form

u=v'+eu' +0(?), a=a"+ea +0(e), (4]

in which all velocities are nondimensionalized with respect to ya. The functions u’ and @’ for a
spherical drop, as well as the 0(¢) contributions in the dominant interfacial tension limit were
obtained by Taylor (1932). The 0(¢) velocity fields in the dominant internal viscosity limit can be
easily obtained using spherical harmonics of order 2 and 4 in the general solution of Lamb; for
details see McMillen (1975).

In order to evaluate the effective conductivity, the local temperature fields must be obtained both
inside and outside a drop. The governing equations, with temperatures nondimensionalized with
respect to aa, are

V2T = Pei- VT) (inside), [5]
VT = Pei(u-VT) (outside), [6]

2
where Pe, =200 206, 1 pe,=210m zpr,,z.
k, k,

The subscripts 1 and 2 refer to the suspending fluid and the fluid in the drop respectively. Following
the earlier analysis of Leal (1973), we shall assume that both Pe; and Pe; are small. Thus, the
temperature distributions are calculated as perturbation expansions for the double limit € <1 and
Pe,, Pe, < 1.Theexpansionin e isregular. However, ateachorderin ¢, the expansionin Pe is singular
and most conveniently obtained by the method of matched asymptotic expansions, which was also
employed by Leal (1973).

In the inner region, which includes the drop, the temperature distribution may be expressed in the
form

T = f"(Pe) T’ + f:°(Pe) T + £-"(Pe) T + - - -
+ G[fol(Pel)Tol +fll(Pe1)Tll ‘*‘]“21([“31)7‘21 +---]+ 0(52), [7a]

T= fOo(Pez) T +f.°(Pe2)T,°+f2°(Pe2) T+
+e[fo'(Pe)To' + fi'(Pex) Ti' + f2'(Pe) To' + - - -] +0(e?), [7b]

where the gauge functions f/(Pe,), which must be found as part of the solution, satisfy the usual
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relationship

m
lim f",:‘ -0.
Pey—>0 fn

The basic governing equations in this region, [5] and [6], are solved subject to the conditions of
continuity of temperature and heat flux at the drop surface,

T|sr, = T)r=r, (8]
kl(n . VT)lrsrs = kz(n : VT),r=r,, [9]

plus boundedness at r =0, and matching for large r with the solution in the outer region.

In the region far from the body, [6] must be rescaled in a manner consistent with the fact that the
conduction and convection terms are of equal magnitude at large distances, even in the limit as
Pe, — 0. This requires the radial variable r to be rescaled according to p = rPe,". For convenience,
T*isusedtodenote the temperature inthis region. The exact form of the governing equation depends
on the physical deformation limit which is considered. For the case of deformation dominated by
interfacial tension forces

aT* C . 3A%, .
2w 22 312 2 . 3 2
V.. T pY: Pe, {W sin” @ sin 2¢ + e[ 207 sin” 6 cos 2¢
*
+ %";(2 ~ 3 sin’® e)J} %—-F 0(Pe,™), [10]

where (%, §) = [Pe,"x, Pe,'?y], V,” represents the usual Laplacian operator with p replacing r, and
C, A%, and A_; are coefficients given by Chaffey, Brenner & Mason (1965) as:

_19A +16
TBA+15

2
A_3=25)‘ +411 +4 C=_(2+5)\)

2 — e
A% 25(A +1)° A+l

For the case of deformation dominated by internal viscous forces, we obtain

* "
V2T - y‘%;— = Pelm{;?z sin® @ sin 2¢%} +0(Pe,”). [11]

In this outer region, an expansion for T* similar to [7] is used, and the resulting equations at each
order solved subject to the condition

1

along with the matching condition

lim T*(p, 6, ) & = lim T(7, 6, 8) as Pe,—>0. [13)

Atfirstorderine, T, T, and T.*are simply the temperature fields for a perfectly spherical drop
which were evaluated previously by Leal (1973)up to T>°, T>", and T4°. However, the two solutions
T\°and T,° were slightly in error in the earlier work, and have been corrected in the presentstudy. For
the sake of brevity, we omit details of the solutions from the present paper and refer the interested
reader to McMillen (1975). It need only be noted here that the first deformation-induced flow
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contributions to the effective conductivity arise from the temperature correction of order €Pe; in the
case of deformation dominated by interfacial tension forces. For the case of deformation dominated
by internal viscosity, however, the order ePe, term produces no contribution to the effective (bulk)
conductivity,and terms through 0(ePe *?yarerequiredinthe inner expansions for the temperature.
We now turn to our main objective, namely the calculation of the first deformation-induced flow
contributions to the effective conductivity of a dilute suspension of slightly deformed drops.

Calculation of effective conductivity from microscale fields

A general expression for the effective conductivity of a dilute suspension of identical particles
was obtained by Leal (1973) for heat transfer across a linear bulk shear flow. For the case of slightly
deformed particles this expression is

eﬁ =k~ Q /01 [14]
where in terms of nondimensional quantities

3k~ k)P (7 (" 3 T
Q'i:(_"i;T_LJ’O L(nyT),:,Arg sin 8880¢ + k'Pelfbf f j u,T'r* sin 09ra0o¢
0 o ry

3k2 7, Ped J’ J’ f > sin 80r304¢.

Here, @ is the volume fraction of suspended particles, uyand T are the disturbance velocity and
temperature fields, u, = u,, T' = T — ay, and n, is the j component of the unit outer normal to the
particle surface. Inthe present work, the asymptotic expressionsfor T, T, T*,u, ii,and n, intermsof €
and Pe are used to evaluate this expression for ihe effective conductivity. For the case of surface
tension controlling deformation, we obtain

ke x _ Wm—1) (1.176(m — 1) 5)\+2< [5)\+2] [ 1])) "
kl_km-1+®{m+2+< D (o2 [T | o8 155 |) )P

+I(m, A, 7)ePe; + 0(e?) + 0(Pe.?) + 0(ePe,™) + - } [15]

where m is the ratio of internal to external conductivities k2/k,, and 7 is the ratio of internal to
external heat capacities Cp./Cp.. I(m, A, 7) is a rather complex function of the three physical
property ratios m, A, 7 which is given explicitly in table 1.

For the case of internal viscous forces controlling deformation we find

_1+q>{3('"+ D, (300 0.14 8= 1)+176Em+g>P e

- (3.6§Z ;gj)e + (1.411 "z(m+ 2)1) [( ) 1] —0.16822 ;;;z)epeﬁ”

+0(e®) + 0(Pe,”) + 0(ePer’) + - - } [16]

Ineach case, the 0(1) and O(Pe,*?) terms arise from Leal’s (1973) calculation for a spherical drop. The
new terms arising due to drop deformation are of order € and ePe,*” for the case of deformation
dominated by internal viscosity. Thus, in general, the deformation induced contributions in this limit
represent small corrections, which are monopolized by the 0(1) and 0(Pe,*?) terms of a perfect
sphere. In contrast, however, the new term for the case of deformation dominated by interfacial
tension is of order ePe.. In this case, the relative magnitudes of the flow-induced contribution for a
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Table 1. 0(eP,) Contribution to the effective conductivity for deformation controlled by surface tensionforces

1
Gm+4)(m +2’m(x +1)

+[~0.66m° — 1.023m* + 5.539m> + 10.956m> + 4.479m — 8.773)A>
+[~2.652m°~6.561m"* + 11.522m> + 27.381m* - 4.570m — 20.002]r
+[~1.604m>+ 14.370m* + 50.410m* + 23.103m* - 61.640m ~ 27.514]}
+[2.273m° - 0.534m* - 41.673m’ + 33.756m > + 23.754m + 1.341)A2
+[-1.110m"* = 3.035m* - 37.122m> + 10.255m> + 20.050m + 7.096]A
+[~5.188m° +20.813m* + 6.986m > — 48.044m > — 0.289m + 2.9401}

I(m, A, 7)=

*{r{[0.36m* +0.48m" — 1.08m> - 0.72m>+0.96m ]A*

where m = k,/k,, A = polu,, 7= Cp,/Cp,

perfect sphere which is 0(Pe,*”), and the deformation-induced flow contribution of 0(ePe) depend
critically on € and Pe;. The difference in the two small deformation limits is apparently a reflection of
differences in the nature of the particle shape in the two cases. In the first case, the drop deforms with
its axis of elongation along the x-axis and its axis of contraction along the y-direction. In the second
case, the drop deforms along the principal axis of strain of the undisturbed shear flow, thus elongating
along an axis 45° counterclockwise from the positive x-axis and contracting along the perpendicular
axis whichis45°from the positive y-axis. Let us now examine the results, [157and [16],in more detail.

For the case of deformation dominated by internal viscous effects, we have plotted in figure 1 the
maghnitude of the deformation-induced convective contribution to the effective conductivity as a
function of the conductivity ratio m for several values of the heat capacity ratio 7,i.e. the last termin
[16]. Although the behavior of this term may seem to depend strongly on 7,it is positive in all cases for
m sufficiently small, negative when m is large, and zero at m = 1. Infact, for m — =, the effective
conductivity, k*s, asymptotically approaches the value

ki ~1+®{3+4.13Pe,** - 3.6¢ — 1.579¢Pe,*?}, (m —»x), (17]

for arbitrary, fixed 7. In this limit, both deformation-induced terms are small corrections to the
dominant terms which correspondto a strictly spherical drop. It should be noted that the limit m — o
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Figure 1. The 0(ePe,*”) term in the effective conductivity when viscous forces control, as a function of the
conductivity ratio, m = k,/k,, for several values of the heat capacity ratio, 7 = Cp./Cp..(a) r =3, (b) 7 = 2; (©)
T=1;(d)r =0.5;(e)7=0.
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must be applied for small, fixed values of Pe; in order that both Pe; and Pe;remain small as required
by our basic solution for the temperature field. The limit m — Omustbe taken with Pe; smalland fixed
for the same reason. In this limit

_3

k:;~1+cb{ 2

3R
+ 3.36%2— Pe;’* —0.9¢ + 0.176mePez”’}, (m > 0). (18]

and both of the convective corrections are positive and vanishingly small, the deformation induced
correction vanishing more slowly, 0(mePe,””), than the convective correction for a spherical drop,
0(m>"Pe,*?), for € and Pe, both small but of fixed value. Finally, when m = 1, the conductivities of
the two fluids are equal and the particle contributionto the effective conductivity is produced entirely
by the convective action of the fluid. For this case,

kX =14 ®{3Pe,”” + 0(¢’) + 0(Pe,’)+ 0(ePe ) + -}, (m =1). [19]

Thus not only do the pure conduction contributions to k ¥z vanish, as expected, when the thermal
conductivities are equal, but, surprisingly, the 0(ePe,**) deformation-induced convective term also
vanishes. These results, [17]-[19], would seem to imply that the deformation contributions in the
dominant internal viscosity case are always small when compared to those for a perfectly spherical

I{m, A1)

Figure 2. The 0(ePe,) term, I(m, A, 7), in the effective conductivity when interfacial tension forces control, as a
function of the conductivity ratio, m = k./k, and the viscosity ratio, A = u./u,, for several values of the heat
capacity ratio, 7 = Cp,/Cp,. Detail a: 7 = 0.5. Detail b: 7 = 1. Detailc: 7 = 2.
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drop, except for m — 0 when both are very small. When the internal and external conductivities are
of similar magnitude, the deformation-induced flow contribution actually vanishes altogether.

For the case of deformation controlled by surface tension forces, the dominant
deformation-induced correction, 0(ePe;), can be either positive or negative depending on the values
of the threeratios, m, A and 7. The general characteristics of the function I(m, A, 7)are demonstrated
graphically infigure 2where I(m, A, 7)isplotted asafunctionof m and A for several values of 7 inthe
range A < 0(1) whichisrequired in order that [2] and [4] remain valid. The three limitingcases m = 1,
m — »,and m — Oare of specialinterest,and can againbe evaluated analytically. Whenm = 1,

2
KA =1+0 {0.12 ((5;:12))2 Pe," +[(0.0551> +0.027 —0.015)r
2 EPel
+(0.099A%— 0.020A — 0.120)] m} [20]

In the limit as m — o, the effective conductivity has the asymptotic form

k¥o=1+ @{3 + [1.176 4A+2 (0.12(M> —0.028)]Pe,3’2+ ePe;

1
A+l A+l (a+1y

{(0.122° - 02217 - 0.884A — 0.534)7 +2.273A>— 1.110A — 5.188+- -}, m — o, [21]

The main point of interest with regard to both [20] and [21] is the fact that the flow-induced
corrections 0(Pe;,*?) and 0(ePe;) are both nonzero for A <0(1). Hence, as in the general case, the
relative importance of the deformation-induced term and the term for an exact sphere depends on the
magnitudes of € and Pe,. Finally, we turn to the limiting case m — 0. It is evident from figure 2 that
I(m,\,7) is very strongly negative in this limit for 0-5<7<2. Indeed, for m — 0,
I(m, A, 7) ~ f(A, 7)/m.Provided care is taken to hold Pe,constant (and small), however, the effective
conductivity can be seen to have the asymptotic form

€Pe,

* _ _3 [ _ 2_ _ 1 2 ]___
keﬁ—l-l—fb{ 2+ (—8.773A°—20.002A 27.514)+T(1.341)\ +7.096\ +2.940) 0+ 17

+} (m —>0). [22]

It is particularly noteworthy that in this limit the deformation-induced flow contribution to k*s
completely dominates the largest flow contribution which occurs for a spherical drop. Thus, as we
suggested in the introduction, the presence of even a small degree of shape deformation can cause a
fundamental change in the nature of the dominant flow contribution to the effective thermal
conductivity. Although the corrections in the present analysis are small in any case due to the
assumptions of small @, Pe,, Pe and ¢, it would appear that care must be taken in attempting to
correlate experimental data for any suspension in which the particles are not exactly spherical with
theoretical results for spherical particles.
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Résumé—On calcule la conductibilité thermique effective d’une suspension diluée de gouttelettes légérement
déformées, dans le cas limite ot elles ont un faible nombre de Péclet, en prenant, pour le milieu, un effqrt de
cisaillement non perturbé, u = yy, et un gradient de température constant T = ay. On considére deux cas
distincts de petites déformations; déformation dominée par les forces de tension interfaciale, et déformation
dominée par les forces de viscosité dans la goutte. Les résultats montrent que la présence de la déformation
peut provoquer un changement fondamental dans la forme de la contribution dominante, induite par
Pécoulement, a la conductibilité effective.

Auszug—Die effektive Waermeleitfachigkeit einer verduennten Suspension von schwach verformten Tropfen
wurde berechnet, an der Grenzekleiner Teilchen-Péclet-Zahlen, fuer ungestoerte Volumgleitung u = yy und
linearen Volumtemperaturgradienten T = ay. Zwei unterschiedliche Faelle kleiner Verformung werden
betrachtet, naemlich durch Zugkraefte in der Grenzflaeche, und durch Viskositaetskraefte im Tropfen
bestimmte Verformungen. Die Ergebnisse zeigen, dass das Auftreten einer Deformation eine grundsaetzliche
Aenderung in Bezug auf den vorherrschenden stroemungsinduzierten Beitrag zur effektiven Leitfachigkeit
hervorrufen kann.

Pestome—dbexTUBHAS TEIIONPOBOAHOCTh Pa3BENEHHBIX CYCIEH3HMH HE3HAMMTENLHO HedopMH-
POBaHHEBIX KameJieK MOACYMTAHA OpPH OTPaHAYEHHMM HEGONBIIMMM 3HAYEHHSMH KouTepus Ilekie
HeHapYIIEHHOTO NPOGHUIA OCHOBHON Macchl P=1. VY B JTHHEHHOTO IrpaJMeHTa TEMIEPATYP B Hel
T=q. V. PaccMOTpeH»! [Ba pa3MYHBIX ciaydas Manslx gedpopmauuii: gedapmaLms, onpeneseMas
CIJIAMH NOBEPXHOCTHOTO HATSDKEHHA Mexny ¢azaMu, u pedopmaums, ompenenseMas CHIAMH
BA3KOCTH B Kamie. Pe3ynbTaThl MOXa3bIBAIOT, 4TO Hauwuue NehOpMAalLmM MOXET TNPHBECTH K
CYIHECTBEHHBIM M3MEHEHHsM B $OpMe BeAYIUETO BKIANA, BHI3LIBAEMOTO TEYEHHEM, B 3¢ CKTHBHYIO
TEIIONPOBAHOCTD.



