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Abstract--The effective thermal conductivity of a dilute suspension of slightly deformed droplets is calculated in 
the limit of small particle Peclet number for the undisturbed bulk shear, u = TY, and the linear bulk temperature 
distribution, T = ay. Two distinct cases of small deformation are considered; deformation dominated by 
inteffacial tension forces, and deformation dominated by viscous forces in the drop. The results show that the 
presence of deformation can cause a fundamental change in form of the dominant, flow-induced contribution 
to the effective conductivity. 

INTRODUCTION 

Recently, Leal (1973) considered the effective conductivity of a dilute suspension of neutrally 
buoyant spherical drops in the limit of low particle Peclet number for the case of a simple bulk shear 

flow (u = ,/y) and a linear bulk temperature distribution (T = 6y). A general expression was 
presented relating the effective (bulk) conductivity of the suspension to the microscale velocity and 

temperature felds associated with each individual particle. Using this relationship, the effective 
conductivity was evaluated for Re ~ P e  ,~ 1, with the velocity fields obtained from the classical 
creeping flow solution of Taylor (1932) for a spherical drop in shear flow, and the microscale 
temperature field calculated using the method of matched asymptotic expansions. 

It is clear, of course, that no droplet in a real suspension will be exactly spherical, and, indeed, the 
deviations from spherical shape can often become quite large. Nevertheless, it would normally be 
expected that the solution for a sphere should provide an adequate first estimate for the effective 
conductivity in a flowing suspension, provided only that either the surface tension or droplet 
viscosity is sufficiently large so that the droplets are nearly spherical. However,  a feature of Leal 's 

analy sis was that the first, O(Pe), flow-induced modification s of the local temperature field near a drop 
produced no contribution to the bulk conductivity, which only finally exhibited a flow-induced 
contribution at O(Pe3/2). Since this result would appear to be due to the symmetry induced in the 
temperature field by the spherical shape of the drop, it is clearly possible that the dependence of the 

effective conductivity on Peclet number could be altered fundamentally when the shape is allowed to 
deviate from spherical; specifically, we may ask whether even very small deformations of shape 
might not cause the first order, O(Pe), modifications of the local temperature field to make 
contributions to the bulk conductivity of the same or larger magnitude than the O(Pe 3/2) contributions 
which were previously found by Leal. 

In the present communication, we consider the case of small deformations of shape in the two 
limiting cases of dominant interfacial tension forces (~ - a~,/~/tr <~ 1), and dominant internal (drop) 
viscosity effects (E - 1/A ~ 1). Here, E is the deformation parameter, p~ the viscosity of the 
suspending fluid, it the ratio of internal to external viscosity, a the undeformed drop radius, and ~ the 
interfacial tension. The case when interfacial tension and internal viscosity effects are the same order 
of magnitude is more difficult and will not be considered. 

The particle shape, local velocity field and temperature distribution 
For small deformations of shape, the surface of a drop is most conveniently represented in the 

form originally suggested by Taylor (1932), 
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r~ = 1 + Ef(o, ~ )  + 0(~ ~) 
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in which (r, 0, 4~) is a spherical coordinate system with its origin at the geometric center of the drop. 
The radial coordinate has been nondimensionalized with respect to the undeformed drop radius, a. 
The precise nature of the deformation parameter •, which is assumed to be small, and the shape 
function f(O, ,b) depends on the physical limit which is considered. For the case of dominant 

interfacial tension forces, Taylor has shown 

• a3qz(19A + 16"~ 
= o- \ ~ } '  f(O, if) = sin: 0 sin 2~. [2] 

On the other hand, for dominant internal viscosity the corresponding re sults are (Taylor 1932) 

5 
• = -4--A' f(O, ~b) = sin: 0 cos 2~b. [3] 

In either case the creeping flow velocity fields outside and inside the drop may be represented by 

asymptotic expansions of the form 

U = U 0 "~- •U 1 4- 0(~2), U = ~0.4_ •~I _~ 0(~2), [4] 

in which all velocities are nondimensionalized with respect to -/a. The functions u ° and ~o for a 
spherical drop, as well as the 0(•) contributions in the dominant interfacial tension limit were 
obtained by Taylor (1932). The 0(•) velocity fields in the dominant internal viscosity limit can be 
easily obtained using spherical harmonics of order 2 and 4 in the general solution of Lamb; for 

details see McMillen (1975). 
In order to evaluate the effective conductivity, the local temperature fields must be obtained both 

inside and outside a drop. The governing equations, with temperatures nondimensionalized with 

respect to 6a, are 

V:T = Pe:(f i .  VT)  (inside), [5] 

V:T = Pe~(u. VT) (outside), [6] 

_ a 27pCp, Pe2 =- a:3,pC~ where Pel = kl ' -~2 " 

The subscripts 1 and 2 refer to the suspending fluid and the fluid in the drop respectively. Following 
the earlier analysis of Leal (1973), we shall assume that both Pe~ and Pe: are small. Thus, the 
temperature distributions are calculated as perturbation expansions for the double limit e ,~ 1 and 
Pe~, Pe: ~ 1. The expansion in • is regular. However, at each order in e, the expansion in Pe is singular 
and most conveniently obtained by the method of matched asymptotic expansions, which was also 

employed by Leal (1973). 
In the inner region, which include s the drop, the temperature distribution may be expressed in the 

form 

T = fo°(Pe,) To o + f , ° (Pe  1) T, ° + f2°(PeO T2 ° + " "  

+ e [fol(Pe3 To' + fl~(Pel) TI 1 + f21(Pe~)T2 ~ + ' "  "] + 0(•2), [7a] 

o - o +  o 2to o - o  . . .  = fo (Pe:) To f, (Pe2) , + f2 (Pe2) T2 + 

+ • [fol(Pe2) To' + fl'(Pe2) TI 1 + f21(Pe2) T21 -~-"' "] ~- 0(• 2), [7b] 

where the gauge functions f l (Pe , ) ,  which must be found as part of the solution, satisfy the usual 
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relationship 

. /.%, 
hm "7-~ ~ 0. 

Pel-~O fn 

The basic governing equations in this region, [5] and [6], are solved subject to the conditions of 
continuity of temperature and heat flux at the drop surface, 

TI . . . .  = TI  . . . . .  [8]  

k,(n. VT)I,~r , = ks(n. VT) I ..... [9] 

plus boundedness at r = 0, and matching for large r with the solution in the outer region. 
In the region far from the body, [6] must be rescaled in a manner consistent with the fact that the 

conduction and convection terms are of equal magnitude at large distances, even in the limit as 
Pe~ -+ O. This requires the radial variable r to be rescaled according to p = rPe~l/S. For convenience, 
T* is used to denote the temperature in this region. The exact form of the governing equation depends 
on the physical deformation limit which is considered. For the case of deformation dominated by 
interracial tension forces 

V2~,  . a T * _  { C  2 13A2_3 . 2 ~, i - y ~ - Pe~ls 4 sin s 0 sin 2~b + EL-~--p2 sm 0 cos 2~ 

5A_3 O)]} O__S__; +O(Pe ~,S), + ~ (2 - 3 sin s [10] 

where (.~, ~) [Pe~"2x, 1/2 = Pel y], Vp 2 represents the usual Laplacian operator with p replacing r, and 
C, A2-3 and A-3 are coefficients given by Chaffey, Brenner & Mason (1965) as: 

25A2+41A +4 (2+5A) A23=19A+16 A-3= C =  
15A+15' 25(A+1) 2 ' h + l  " 

For the case of deformation dominated by internal viscous forces, we obtain 

V2T,  .aT* Pel~/2{~pC 2 OT* ~,2 p - y - - ~ - =  sin20 sin2&-~---p }+0(Pe~ ). [ll] 

In this outer region, an expansion for T* similar to [7] is used, and the resulting equations at each 
order solved subject to the condition 

sin 0 sin th as 
T* ~ ap pell/2 p ->o% [12] 

along with the matching condition 

lim T*(p, 0, ~b) ~ ff  lim T(r, 0, ~b) as Pe, ---> O. 
p~0 r ~  

[13] 

At first order in e, T~ °, T °, and T~ ,o are simply the temperature fields for a perfectly spherical drop 
which were evaluated previously by Leal (1973) up to T2 °, T2 °, and T~ °. However, the two solutions 
T~ ° and RI o were slightly in error in the earlier work, and have been corrected in the present study. For 
the sake of brevity, we omit details of the solutions from the present paper and refer the interested 
reader to McMillen (1975). It need only be noted here that the first deformation-induced flow 



108 T.J. McMILLEN and L. G. LEAL 

contributions to the effective conductivity arise from the temperature correction of order ePe, in the 
case of deformat!on dominated by interfacial tension forces. For the case of deformation dominated 
by internal viscosity, however, the order ePe, term produces no contribution to the effective (bulk) 
conductivity, and terms through 0(ePe 3/2) are required in the inner expansions for the temperature. 

We now turn to our main objective, namely the calculation of the first deformation-induced flow 

contributions to the effective conductivity of a dilute suspension of slightly deformed drops. 

Calculation of  effective conductivi ty  f rom microscale fields 
A general expression for the effective conductivity of a dilute suspension of identical particles 

was obtained by Leal (1973) for heat transfer across a linear bulk shear flow. For the case of slightly 

deformed particles this expression is 

k ~  = k , -  Q',/a, [14] 

where in terms of nondimensional quantities 

Q~ yo2 fo y) 3(kt - k2)dP fo (nyT)'=r r~2 sin O3OOga +3k l  • 47r ~ u'yT'r2 sin OOrOOOq5 

+ 3k2 Pez~p f 2 ~ f ~ f r ' u - ' ~ T ' r :  sin OOrOOOdp. 
4~r ,o ,o ,o 

Here, qb is the volume fraction of suspended particles, u ~ and T' are the disturbance velocity and 
temperature fields, u'r = u .  T' = T - ay, and n~ is the j component of the unit outer normal to the 
particle surface. In the present work, the asymptotic expressions for T, T, T*, u, ~, and n~ in terms of • 
and Pe are used to evaluate this expression for the effective conductivity. For the case of surface 

tension controlling deformation, we obtain 

= 1 [1.176(m- +2 (0.12 [5 ,  + 2] m - 1  

+ I ( m, h, z )~P e , + 0( ~ 2) + O( P e , 2) + O( eP e , 31z) +" • "}, [15] 

where m is the ratio of internal to external conductivities kdk l ,  and z is the ratio of internal to 
external heat capacities CpdCp , .  I (m,  A, r) is a rather complex function of the three physical 

property ratios m, A, • which is given explicitly in table 1. 
For the case of internal viscous forces controlling deformation we find 

k*fr = 1 +'I)~ "3(m -_1)+ (3 0 0 - 0  14 (m - ! ) + "  ~ . ( m  - 1)2~p e 3/2 
t m +2 \ " " m +2 l . , ~ - ~ ]  , 

_{a~(m-1)Z'~e ( 1 . 4 1 i r a ( m - l )  z [ ( r ~  1] . . . .  ( m - 1 ) z \  p 3/2 

O(ePe, 2) +. • • }. [16] +0(e 2) + O(Pe, 2) + 

In each case, the 0(1) and O(Pe 3~2) terms arise from Leal's (1973) calculation for a spherical drop. The 
new terms arising due to drop deformation are of order e and ePe, 3~2 for the case of deformation 
dominated by internal viscosity. Thus, in general, the deformation induced contributions in this limit 
represent small corrections, which are monopolized by the 0(1) and 0(Pej 3/2) terms of a perfect 
sphere. In contrast, however, the new term for the case of deformation dominated by interfacial 
tension is of order ePe,. In this case, the relative magnitudes of the flow-induced contribution for a 
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Table 1. O(eP,)Contrihutiontotheeffectiveconductivityfordeformation c o n t r o l l e d b y s u r f a c e t e n s i o n f o r c e s  

1 X 5 4 I(m, it, ~-) = (3m + 4 ) ( m  + 2 ) 3 m ( A  + 1) = {r{[0.36rn + 0 . 4 8 m  - 1.08m3-O.72mZ+O.96m]it 3 

+ [ - 0 . 6 6 m  5 _ 1.023rn" + 5 .539m 3 + 10.956m 2 + 4 .479m - 8.773]it 2 

+ [ - 2 . 6 5 2 m  ~ - 6.561 m" + 11.522m ~ + 27.381 rn 2 _ 4 .570m - 20.002]it 

+ [ -  1 .604m ~ + 14.370m" + 50.410rn 3 + 23.103m 2 _ 61 .640m - 27.514]} 

+ [2 .273m 5 _ 0 .534m" - 41 .673m 3 + 33.756m 2 + 23.754m + 1.341]it 2 

+ [ -  1.! 10m 5 _ 3 .035m 4 _ 37,122m 3 + 10.255m z + 20,050m + 7,096]it 

+ [ - 5 . 1 8 8  m 5 + 20.813m" + 6 ,986m 3 _ 48.044m 2 _ 0 .289m + 2.940]} 

w h e r e  m - :  kJk,, it =- t121tx,,  r =- C p 2 / C p ,  

perfect sphere which is 0(Pel3J:), and the deformation-induced flow contribution of O(ePe,) depend 
critically on e and Pe,. The difference in the two small deformation limits is apparently a reflection of 
differences in the nature of the particle shape in the two cases. In the first case, the drop deforms with 
its axis of  elongation along the x-axis and its axis of contraction along the y-direction. In the second 
case, the drop deform s along the principal axis of  strain of the undisturbed shear flow, thus elongating 
along an axis 45 ° counterclockwise from the positive x-axis and contracting along the perpendicular 
axis which is 450 from the po sitiv e y-axis. Let u s now examine the re suits, [ 15] and [ 16], in more detail. 

For the case of  deformation dominated by internal viscous effects, we have plotted in figure 1 the 
magnitude of the deformation-induced convective contribution to the effective conductivity as a 
function of the conductivity ratio m for several values of the heat capacity ratio ~, i.e. the last term in 
[16]. Although the behavior of this term may seem to depend strongly on ~',it is positive in all cases for 
m sufficiently small, negative when m is large, and zero at m = 1. In fact, for m ---> 0% the effective 
conductivity, k%, asymptotically approaches the value 

k *  ~ 1 + q b { 3  + 4 . 1 3 P e , 3 / 2 - 3 . 6 E  - 1 . 5 7 9 e P e , 3 1 2 } ,  ( m  --->oo), [ 1 7 ]  

for arbitrary, fixed r. In this limit, both deformation-induced terms are small corrections to the 
dominant terms which correspond to a strictly spherical drop. It should be noted that the limit m --> oo 
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Figure  1. T h e  O(~Pefl n) term in the  e f fec t ive  conduct iv i ty  w h e n  v i s cous  f o r c e s  control ,  as a func t ion  of  the  
conduc t iv i ty  ratio, m = k2/k,, for several  va lues  o f  the heat  capac i ty  ratio, r = C p J C p ,  (a) ~" = 3, (b) ~" = 2; (c)  

~" = l ; ( d )  ~- = 0 .5 ; (e )  z = 0 .  
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must be applied for small, fixed values of Pel in order that both Pe~ and Pe2 remain small as required 

by our basic solution for the temperature field. The limit m ---> 0 must be taken with Pe2 small and fixed 

for the same reason. In this limit 

~ m 3/2 } 
k , * -  1 +alp - +3.36 z--rr2-Pe2312-0.9e +O.176mePe23~2 , (m ~0). [18] 

and both of the convective corrections are positive and vanishing!y small, the deformation induced 

correction vanishing more slowly, O(mEPe2S~2), than the convective correction for a spherical drop, 

O(m S12Pe2S~2), for ~ and Pe2 both small but of fixed value. Finally, when m = 1, the conductivities of 

the two fluids are equal and the particle contribution to the effective conductivity is produced entirely 

by the convective action of the fluid. For this case, 

k**~ = 1 + qb{3Pe, 3/2 + 0(~ 2) + 0(Pel2) + 0(¢Pet 2) + "  "}, (m = 1). [19] 

Thus not only do the pure conduction contributions to k*n vanish, as expected, when the thermal 

conductivities are equal, but, surprisingly, the O(¢Pel 3/2) deformation-induced convective term also 

vanishes. These results, [17]-[19], would seem to imply that the deformation contributions in the 

dominant internal viscosity case are always small when compared to those for a perfectly spherical 

(o) 1-17 -17 

(C) 1-17 
Figure 2. The 0(c-Pel) term, I(m, ;t, ~), in the effective conductivity when interracial tension forces control, as a 
function of the conductivity ratio, m = kJkl, and the viscosity ratio, a = #2/~1, for several values of the heat 

capacity ratio, ¢ = Cp2/Cpl. Detail a: • = 0.5. Detail b: ~" = 1. Detail c: z = 2. 
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drop, except for m ---> 0 when both are very small. When the internal and external conductivities are 

of similar magnitude, the deformation-induced flow contribution actually vanishes altogether. 

For the case of deformation controlled by surface tension forces, the dominant 
deformation-induced correction, O(~Pel), can be either positive or negative depending on the values 
of the three ratios, m, h and z. The general characteristics of the function I(m, A, z) are demonstrated 
graphically in figure 2 where I(m, A, r)  i s plotted as a function of m and h for several values of z in the 

range A ~< 0(1) which is required in order that [2] and [4] remain valid. The three limiting cases m = 1, 
m ~ ~, and m --) 0 are of specialinterest, and can again be evaluated analytically. When m = 1, 

(5A +2)2n 3/2 
k*n = 1 + qb 0 . 1 2 - ~ - ~ - r e ~  + [(0.055A 2 + 0.027A - 0.015)z 

+ (0.099A 2 -  0.020A - 0.120)] ~ } .  [20] 

In the limit as m --> oo, the effective conductivity has the asymptotic form 

{[ ( , k ~ f = l + q b  3+  1 . 1 7 6 + ~  0.12 -0 .028 Pe,SZ2+ePe,(A+l)2 

{(0.12A 3 _ 0.22A 2 _ 0.884A - 0.534)~- + 2.273A 2 _ I. 1 IOA - 5.188 +-  • .}, m ---> ~. [21] 

The main point of interest with regard to both [20] and [21] is the fact that the flow-induced 
corrections O(Pel 3/2) and O(~PeO are both nonzero for )t < 0(1). Hence, as in the general case, the 

relative importance of the deformation-inducedterm and the term for an exact sphere depends on the 
magnitudes of ~ and Pe~. Finally, we turn to the limiting case m ---) 0. It is evident from figure 2 that 
I(m,A,r) is very strongly negative in this limit for 0 . 5 < r < 2 .  Indeed, for m--->0, 
I(m, )t, z) ~/(A, r)/m. Provided care is taken to hold Pe2 constant (and small), however, the effective 
conductivity can be seen to have the asymptotic form 

EPe2 k*n = 1 + q b f - ~ +  [ ( -8 .773A2-20 .002A-  27.514)+ 1(1.341A2 + 7.096A + 2.940)1 32(A + 1)2 

+ . . . }  (m-~O). [22] 

It is particularly noteworthy that in this limit the deformation-induced flow contribution to k*~ 
completely dominates the largest flow contribution which occurs for a spherical drop. Thus, as we 

suggested in the introduction, the presence of even a small degree of shape deformation can cause a 

fundamental change in the nature of the dominant flow contribution to the effective thermal 
conductivity. Although the corrections in the present analysis are small in any case due to the 
assumptions of small ~ ,  Pe,, Pe~ and e, it would appear that care must be taken in attempting to 

correlate experimental data for any suspension in which the particles are not exactly spherical with 
theoretical results for spherical particles. 
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R6sum6---On calcule la conductibilit6 thermique effective d'une suspension dilu6e de gouttelettes 16g~rement 
d6form6es, dans le cas limite o~ elles ont un faible nombre de P6clet, en prenant, pour le milieu, un effgrt de 
cisaillement non perturb6, u = yy, et un gradient de temp6rature constant T = ay. On consid~re deux cas 
distincts de petites d6formations; d6formation domin6e par les forces de tension interfaciale, et d6formation 
domin6e par les forces de viscosit6 dans la goutte. Les r6sultats montrent que la pr6sence de la d6formation 
peut provoquer un changement fondamental dans la forme de la contribution dominante, induite par 
l'6coulement, ~ la conductibilit6 effective. 

Auszug--Die effektive Waermcleitfaehigkeit einer verduennten Suspension von schwach verformten Tropfen 
wurde berechnet, an der Grenzekleiner Teilchen-P6clet-Zahlen, fuer ungestoerte Volumgleitung u = yy und 
linearen Volumtemperaturgradienten T = ay. Zwei unterschiedliche Faelle kleiner Verformung werden 
betrachtet, naemlich durch Zugkraefte in der Grenzflaeche, und durch Viskositaetskraefte im Tropfen 
bestimmte Verformungen. Die Ergebnisse zeigen, dass das Auftreten einer Deformation eine grundsaetzliche 
Aenderung in Bezug auf den vorherrschenden stroemungsinduzierten Beitrag zur effektiven Leitfaehigkeit 
hervorrufen kann. 

Pe$1oMe---~d/~K'THBHa51 TeHHonpoBo~HOCTb pa3Be~eHHbIX cycneH3H~ He3Ha~IHTeJIbHO ~e~opMH- 
p o B ~ x  Kane~e~ nO~Cm4TaHa npH orpam~eHHm~ He60~bmHMH 3HaqeHILqMH KOHTepH~[ 1-IeKHe 
HeHapymeHHOrO npodpHaa OCHOBHOI~ MaCCbI It : T .  y H aHHei~oro rpa~HeHTa TeMnepaTyp B Hel~ 
T---~a. Y. PaCCMOTpeHbl ~Ba pa3aHqHbiX cny~ag M an~x  ~e~bopMattufl: RecbapMaIma,onpeReymeMas 
CHJIaMH noBepXHOCTHOrO HaTg)KeHHg M e ~ y  qSa3aMn, H ~eOpopMam~, onpe~IeyLqeMag cnflaM~ 
B}I3KOCTH B ranae .  Pe3yHbTaTbI noKa3bmamT, qTO HaHH~me /IeqbopMaHHH MOXeT npHBecrH r 
cyI.u~-'TBeHHblM H3MeHCI-IHgIvl B qbopMe ee~ymero  aKYla~a, BbI3bIaaeMoro Te~eHHeM, B 3~p~X~KTHBHyIO 
TeKIIOHpOBHHOCTb. 


